International Journal of Theoretical Physics, Vol. 45, No. 1, January 2006 (© 2006)
DOI: 10.1007/s10773-005-9009-8

Internal Modes of Relativistic Solitons
A. R. Gharaati,! N. Riazi,”3 and F. Mohebbi!

Received April 26, 2005, accepted November 24, 2005
Published Online: May 17, 2006

We apply a linear perturbation analysis to investigate the relationship between soliton
oscillations and the integrability of nonlinear PDEs in bi-dimensional spacetime. For
this purpose, we consider a localized solution of the nonlinear differential equation, and
study small amplitude fluctuations around it. The linearized equation is a Schrodinger-
like, eigenvalue problem. By considering several nonlinear PDEs, which are known to
have soliton and solitary wave solutions, we find that in systems which are integrable,
this eigenvalue equation has one and only one bound state with zero frequency. Non-
integrable equations—in contrast—show extra bound states. The time evolution of
the oscillations are also calculated, using a numerical program to integrate the time-
dependent equation. The behavior of the modes are studied, using the Fourier transform
of the evolving solutions.
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1. INTRODUCTION

The subject of integrability of nonlinear PDEs is one of the most important
topics in nonlinear physics (Das, 1989). Integrability is important, because, for
such a system, we gain complete information about the evolution of the system,
provided that we have the initial conditions. If one can prove that a dynamical
system is integrable, one becomes sure that its solutions are free from any chaotic
behavior (Berry, 1978). Moreover, in order to solve a nonlinear PDE via inverse
scattering transform, one needs to know that the system is integrable (Drazin and
Johnson, 1989).

A continuous integrable system has an infinite number of conserved quanti-
ties. This makes soliton solutions of such equations retain their shape and velocities
after collisions with other solitons or localized perturbing potentials. Checking the
integrability of nonlinear equations, and thus proving that the soliton-like solutions
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of such equations are genuine solitons, is usually a cumbersome and involved prob-
lem. Although numerical simulations help very much in monitoring the behavior
of solitons during their collisions with other solitons or localized inhomogeneities
(Riazi, 1993), but they cannot be considered as an exact means to check the
integrability, because of the unavoidable numerical errors.

A Hamiltonian system whose phase space is 2N dimensional is integrable by
the method of quadratures if and only if there exist exactly N functionally inde-
pendent conserved quantities which are in involution, that is, the Poisson brackets
of these conserved quantities with one another vanish (Das, 1989). Although this
definition is for a dynamical system with a finite number of degrees of freedom,
the same goes through for a system with an infinite number of degrees of freedom
with a little modification. It is clear that a system with an infinite number of degrees
of freedom, i.e., a continuous system, must have an infinite number of conserved
quantities.

In this paper, we apply a linear perturbation analysis to investigate the re-
lationship between the spectrum of these perturbations and integrability. It turns
out that the solitons of integrable systems have only one bound state with zero
frequency, which exactly corresponds to the translational symmetry of the system.
Non-integrable systems, on the other hand, have extra bound states, which can be
excited in the process of collision with other solitons or scattering by perturbing
potentials. Furthermore, we will calculate the time evolution of the perturbations,
by integrating, numerically, the time-dependent equations. The time-dependent
solutions are then Fourier-transformed to find the corresponding modes and their
evolution.

There are various methods for determining the integrability of a continuous
system. Each of these methods has its own advantages and disadvantages. Here,
we will only introduce two methods known as the Lax (Lax, 1968) and Painleve
methods (Ramani et al., 1989).

1.1. Lax Method

In this method, one should introduce a couple of linear operators which are
called Lax pairs, L and M, by inspection. They operate on elements of a Hilbert
space, and depend upon p and g. L and M should be chosen so that they satisfy
Hamilton’s equations and also

L,=ML—LM=[M,L] (1)

where L, = dL/dt and [M, L] is the commutator of the operators M and L (Lax,
1968). By using equation (1) and induction, it is easy to show that

n

7 =[M,L"], 2
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where 7 is a positive integer. Now, if we take a trace from both sides of the above
equation, we obtain

n

d
= —uLl" =u(ML" — L"M) =0,
= L = )=0 3)

tr

Therefore, trL"” for every positive integer n are constants of motion. So, if we
can introduce a Lax pair for a dynamical equation, then we can find its constants
of motion, and therefore, the system will be integrable.

1.2. Painleve Method

Nonlinear differential equations may have solutions which have movable sin-
gularities, i.e., their position only depend on the arbitrary constants of integration.
It is convenient to differentiate between poles and all other singularities. A critical
point is a singularity, i.e., a point at which the solution is not analytic. This point is
not a pole. Thus a critical point might be a branch point or an essential singularity.
We refer to the absence of movable critical points for an ordinary differential
equation as the Painleve property.

Painleve and Gambier (Ince, 1927) considered 50 different cases for the
second order differential equation

d*w F dw @
s = W, — |,
dz? ¢ dz

where F is rational in w and ‘;—f, and analytic in z. Solutions of six equations of
this category are not well known function. They are called Painleve transcendents,
and are labeled as P-I to P-VI. These equations are known to be irreducible.

The 50 equations mentioned above are the only rational second order equa-
tions which satisfy the Painleve property.

According to the Painleve conjecture, a nonlinear partial differential equation
is completely integrable, if every ordinary differential equation derived from it (by
exact reduction) satisfies the Painleve property.

Such an ordinary differential equation may result from a nonlinear partial
differential equation by transformations.

2. INTEGRABILITY AND SOLITON OSCILLATIONS

In this section, we apply a linear perturbation analysis to investigate the
relationship between the integrability of a nonlinear PDE and the spectrum of
the bound states of the linearized equation. For this purpose, we first consider a
static, localized solution of the nonlinear differential equation. Let us represent it
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as ¢ = ¢o(x). We now study small fluctuations around this static configuration

¢ = ¢+ Y(x)e'”  where |Y| K |gol. ®)

Inserting this into the nonlinear differential equation and expanding to the first
order in ¥, we obtain an eigenvalue equation for yr. Subsequently, we will use the
full, time-dependent equations and will integrate them numerically, to observe the
time evolution of small and large amplitude oscillations. We will Fourier transform
the solutions in the time domain to see the excitation and decay of the characteristic
modes.

In the following sections, we apply this procedure to several well-known
equations which have relativistic covariance.

2.1. Sine-Gordon Equation

As a first example, consider the well-known sine-Gordon (SG) equation:

¢  0%¢

— — — =sing. 6

oxz 012 ¢ ©)
This equation is known to have the following static single soliton solution:

$o(x) = 4tan"" €*. (7

Let us perturb this static solution:

P(x, 1) = Po(x) + Y(x)e'". ®)

Inserting (8) into the sine-Gordon equation and expanding to the first order in
we obtain the Schrodinger-like equation

d2
—oaV VWY = Ey. ©)
where
V(x) = —2sech?(x), (10)
and
E=—1+0% (11)

Fortunately, this equation can be solved exactly (Lamb, 1980). It has only
one bound state, which corresponds to £ = —1 or w = 0. The corresponding
eigenfunction is

Y1 = asech(x). (12)

Figure 1 shows the Fourier transform of the time-dependent solution ¢(x, t),
corresponding to the perturbed, single-soliton solution of the SG equation. It is
seen that no non-zero modes are present.
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Fig. 1. Fourier transform of the time-dependent SG equation, initi-
ally perturbed by v (x) witha = 1.

It can be easily shown that this eigenfunction is associated with an infinites-
imal translation of the static soliton:

V1 2 (X + 8x) — Po(x). (13)
Another solution to equation (9) is
Yo = x sech(x) + sinh(x), (14)

but this solution does not satisfy the necessary boundary conditions. Bound states
are required to be localized and bounded.

2.2. The ¢* System
The well-known ¢* system with the dynamical equation

3?9 3%

’;
L b= 15
52 a2 ¢»—9 (15)
has the solitary wave solution (Rajaraman, 1982):
1
, = tanh | —(x — xo):| . (16)
’ [ﬁ
The perturbed, linearized equation reads
d2
_4v (6sech’x)y = Qw? — 4). (17)

dx?
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Fig. 2. Fourier transform of the time-dependent solution of the ¢*
equation, initially perturbed with v (x) and a = 1. Note the existence
of a non-trivial mode, as compared with Fig. 1.

This equation has two bound eigen-solutions (Lamb, 1980). The symmet-
rical (ground state) solution corresponds to w = 0 and the antisymmetric solu-
tion has w = #./3/2. The corresponding eigenfunctions are yr; = a sechx and
Y, = asechxtanhx, respectively. In order to further study these modes, we cal-
culated the time evolution of the perturbed solutions, by integrating the full,
nonlinear equation of motion, and then Fourier transforming the results. It is seen
in Fig. 2 that although initially only the zero (symmetric) mode is excited, the
anti-symmetric mode, too, becomes excited, as a result of the nonlinearity of the
system.

2.3. Double Sine-Gordon Equation

Consider a modified sine-Gordon equation with the following potential (Riazi
and Gharaati, 1998):

V(p) = (1 —cos¢) + € [1 — cos(2¢)] . (18)

The corresponding dynamical equation of motion is

2 2
% _ % = sin ¢ + 2¢ sin(2¢). (19
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The exact static solution of this equation is

1-A

o=4t - T
o =dtan TS

(20)

where

_ sinh(v/4€ + 1x)
\/46 + cosh? \/4e + lx.

By perturbing this solution (¢ = ¢, + ¥ e'®") and linearizing the resulting
equation, we obtain the Schrodinger-like equation

d2
~LY v = oy, @D
dx
where V (x) is given by
V(x) = 32ea’® — (32 — 2)a + 4e — 1, (22)
with
sinh? Bx

o=——->— and B=+de+1.
4¢ + cosh” Bx

This potential is too complicated to be solved exactly. We first tried asymptotic
solutions, and then solved the equation numerically, using a combined variational-
finite-difference method, leading to well-behaved solutions. We have found two
eigen-solutions. The symmetric and anti-symmetric solutions corresponding to
€ = 0.5, for w; = 0 and w, = 1.243 are shown in Fig. 3. Solutions of (21) have
very sensitive dependencies on w’s, such that if we change w very slightly, they will
diverge very rapidly. The values of the eigenvalues can therefore be pin-pointed
easily.

2.4. Double Sinh-Gordon Equation

Let us consider the dynamical equation

92 92

B_If - 8_x¢2) = 4z sinh(2¢))(z cosh(2¢) — n), (23)
where z is a constant, n is an integer and n > z (Khare et al., 1997). The static
solution of this equation is

¢, = tanh ™! |:tanh(<1>0) tanh (x _gxo )] 24)
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Fig. 3. The linearized potential of the double sine-Gordon equation and
the two bound states for e = 0.5. The corresponding frequencies are w = 0
and 1.243.

where & = [2(n® — z2)]7"/? and cosh(2®,) = g The Schrodinger-like equation
which results from small perturbations around this static solution reads:

—y" + VY = o’y, (25)
where V(x) is given by
14342\° 1+ A2
2
V(x) =8z <1—A2) —8zn<1_A2). (26)

Here, A = tanh(®,) tanh(*2¢). The ground and four excited states are shown in
Fig. 4 for z = 0.25 and n = 1. The corresponding values of w are approximately
equal to 0.707, 2.29, 3.23, 3.81, and 4.06.

2.5. Modified Sine-Gordon Equation

Consider the following modification of the sine-Gordon equation (Riazi and
Gharaati, 1998):

Pp 3 IV(9)
e ap 7



Internal Modes of Relativistic Solitons 65

Fig. 4. The linearized potential of the double sinh-Gordon equation and
the five bound states forn = 1, and z = 0.25. The corresponding frequen-
cies are 0.707, 2.29, 3.23, 3.81, and 4.06.

in which

—cos¢®  2sin’¢*/2

2922 2¢p2
The static soliton-like solution of this equation is given by (Riazi and Gharaati,

1998):

(28)

1
Vip) =

¢, = [4tan~! *]V/". (29)

The Schrédinger-like equation which results by substituting ¢ = ¢, + e’
in (27), has the following attractive potential

2 12 S . 12
Vix) = S—zq s S(E - 1) sing — Es qcosq

21 —25) ra 1.
+——5—4¢ " |(s= D —cosg)—Zsqsing |, (30)
N

1

where ¢ = 4tan™" e*. For s = % it reads:

V(x) = 4sech(x) — 2 sech(x) tanh(x) + 4tan’1(ex) [1 — 2sech(x)]. 31
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Fig. 5. The potential of the linearized, modified sine-Gordon equation and
the first bound state for s = 1.05 and w = 0.1268.

The eigenvalues and eigenfunctions are again computed numerically. The
first bound state is shown in Fig. 5. The corresponding value of @ for s = 1.05 is
0.1268. Numerical results show that ® — O ass — 1.

3. CONCLUSIONS

In 1 4 1 dimensions, Schrodinger equation with an attractive potential has
at least one bound state (Lamb, 1980). We showed that for the conventional sine-
Gordon equation which is an integrable system, one and only one bound state with
zero frequency exists, while for non-integrable systems which have topological,
solitary solutions, there exists at least one extra bound state with non-vanishing
frequency. We therefore, put forward the conjecture that the existence of such
bound states are a signature of the non-integrability of the system, at least for
the systems considered in the present work. This conjecture is stimulated by the
observation that the solitary solutions of non-integrable equations, can absorb
energy from the collective translational energy in the process of collisions with
other solitary waves or perturbing inhomogeneities. If no other bound states except
for the w = 0 one exist, this channel for energy absorption does not exist and the
soliton must leave the interaction area without any deformation.

The study of the internal modes of non-relativistic equations which do not
possess static solutions is a more subtle problem. In the case of weakly nonlinear
optical media, we know that there are envelope solitons which satisfy the cubic
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nonlinear Schrodinger (NLS) equation. It is already known that such a system
does not possess internal modes (Pelinovsky et al., 1998). Pelinovsky et al. have
studied the internal modes of systems more general than the cubic NLS equation.
In particular, they have studied non-integrable equations which have envelope,
soliton-like solutions. It is known that such envelope soltary waves show long-
lived oscillations which are practically undamped. Pelinovsky ez al., 1998 showed
that the generalized NLS equation possesses localized internal modes similar
to those of the topological ¢* system we considered above. The internal mode
shows up as a “beating” in the amplitude of the envelope solitary wave. This
observation suggests that our conjecture regarding the relationship between the
integrability and the existence of non-trivial internal modes might be extended to
non-relativistic, envelope solitons.

This conclusion leaves an interesting problem for those working on soliton
theory to show-in a rigorous way-whether our conjecture holds generically.
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